
Transistors and Logic

Key Terms

• transistor
• semiconductor
• true
• false
• Boolean logic

Overview
Computers represent and process 1s and 0s using sequences of physical components
called transistors. By linking different configurations of these transistors, computers
can perform everything from basic arithmetic to playing a video. However, thanks to
layers of abstraction, we don’t need to constantly think about at the level of binary
and transistors to program a computer. Sequences of transistors can be represented
by Boolean logic, and these sequences of logic gates can then be packaged into chips
(hardware) and code (software).

Transistors
Transistors are small hardware devices made of semiconduc-
tors that act as switches for electric current. Because transis-
tors are made of semiconductors, transistors can behave as
both insulators (materials that inhibit electron flow) and con-
ductors (materials that enable electron flow). When a small
current is provided into a transistor’s gate, the gate “opens”
and current can flow from the source to the sink. When no
current is available at the gate, the gate “closes” and current
cannot flow from the source to the sink. By controlling cur-
rent flowing into the gate, transistors can manipulate how
current flows and therefore which signals are sent.

This is CS50.© 2018

Boolean Logic

CS50

Since transistors either enable or disable the flow of electricity, we can use transistors to represent the binary
values 1 and 0, or true and false. By linking these transistors in complicated webs, we can implement complex
processes using a branch of math known as Boolean logic, created by the mathematician George Boole.

Boolean logic is built upon the two Boolean values, true and false, and the fundamental operators AND, OR, and
NOT. Similar to arithmetic operations, these operations take value(s) as input and output one value. For example,
in the statement 2 + 3 = 5, 2 and 3 are our inputs, + is our operator, and 5 is our output. Boolean logic looks very
similar. In the statement “true AND false = false,” true and false are our inputs, AND is our operator, and false is
our output. The trick here is that while you know what the + sign does, you may not be familiar with the rules
of Boolean operators. Luckily, they operate similarly to how these words are used in English. The AND operator
requires that the first and second input are true to output true. Otherwise, it returns false. For example, the state-
ment “the shirt is green AND striped” is only true if the shirt is both green and striped. The OR operator requires
that either the first or second input is true for it to return true. The statement “the shirt is green OR striped” is
true for a green shirt, a striped shirt, and a green
striped shirt, but not true for any other shirt. The
NOT operator, like a negative sign, only takes in
one value and simply flips it, changing true to
false and vice versa. The negation of the state-
ment “the shirt is green AND striped” would be
“the shirt is NOT green OR NOT striped.”

By combining these fundamental operators in
sequences, we can build gates like NAND (not
and), NOR (not or), and XOR (exclusive or), and
then eventually basic arithmetic, and then even
more complex operations like editing a photo.

if current
flows here...

gate

source

sink

....current
 can
 flow
 here

A B

true true true true false

true false false true false

false true false true true

false false false false true

