
Functions
Key Terms

• functions
• abstraction
• return type
• side-effect
• return value
• scope

Overview
Functions are reusable sections of code that serve a particular purpose. Functions can
take inputs and outputs, and can be reused across programs. Organizing programs into
functions helps to organize and simplify code. This is an example of abstraction; after
you've written a function, you can use the function without having to worry about the
details of how the function is implemented. Because of abstraction, others can use (or
"call") the function without knowing its lower-level details as well.

Function Syntax
All programs you've written in C already have one function: main. However, pro-
grams in C can have more functions as well. The program on the left defines a
new function named say_hi().

The first line of a function requires three parts: first, the function's return type,
which is the data type of the function's output that is "returned" to where the
function was called. If the function does not return a value, the return type is
void. Second, the function's name; this cannot include spaces and cannot be one
of C's existing keywords. Third, in parentheses, the function's parameters, also
known as arguments. These are the function's inputs (if there are none, use void).
After this first line (known as the declaration line), the code defining the function
itself is enclosed in curly braces.

In the example above, the say_hi() function causes "Hi\n" to be printed to the screen. This is called a side-ef-
fect, which is something a function does outside of its scope that is not returning a value. The say_hi() function
is then called twice in the main function. Functions are called by writing the function's name, followed by any
arguments in parentheses, followed by a semicolon. When the program is run, "Hi\n" prints to the screen twice.

This is CS50.© 2018

Scope
Variables that are defined inside of functions or in the list of function parameters have local scope, meaning
those variables only exist inside of the function itself and have no meaning elsewhere. In the example above, if
you were to try to reference the variable x inside of the main function, the compiler would give you an error; the
main function doesn't know what x means, only square does. Likewise, any variables defined inside of main can't
be accessed from inside of square.

If variables are defined outside of any functions, they have global scope instead of local scope. This means they
can be accessed from any of the functions in the file. However, global variables are more difficult to keep track of
and can be changed from any location in the program. Because global variables have global scope, that variable
name cannot be reused in other parts of your program.

Inputs and Outputs
The example on the right shows a function, square, which takes input and
output. square takes one input: an integer called x. It also returns an int
back to the where the function is called. Line 5 of the function specifies
the function's return value, denoted by the word return. In this case, the
square function returns the input value x multiplied by itself. When the re-
turn line is reached, the function is exited and the return value is returned
to where the function was initially called.
Now that we've written this function, we can use square elsewhere in our
program anytime we want to square a number. In the main function on
the right, the square function is called three times: each time, the function
is evaluated and returns the appropriate return value in the place of the
function. So printf("%i\n, square(2)) has the equivalent effect of writ-
ing printf("%i\n", 2 * 2) or printf("%i\n", 4).

 1 #include <stdio.h>
 2
 3 void say_hi(void)
 4 {
 5 printf("Hi!\n");
 6 }
 7
 8 int main(void)
 9 {
10 say_hi();
11 say_hi();
12 }

 1 #include <stdio.h>
 2
 3 int square(int x)
 4 {
 5 return x * x;
 6 }
 7
 8 int main(void)
 9 {
10 printf("%i\n", square(2));
11 printf("%i\n", square(4));
12 printf("%i\n", square(8));
13 }

CS50

