
Binary Search

Key Terms

• algorithms
• linear search
• binary search
• pseudocode

Overview
There are many different algorithms that can used to search through a given array.
One option is linear search, but it can be a rather lengthy process. Luckily, there is a
faster searching algorithm: binary search. You might recall that binary search is similar
to the process of finding a name in a phonebook. This algorithm’s speed can be leaps
and bounds better than linear search, but not without a cost: binary search can only be
used on data that is already sorted.

The Binary Search Algorithm
The basis of binary search relies on the fact that the data
we’re searching is already sorted. Let’s take a look at what
the binary search algorithm looks like in pseudocode. In this
example, we’ll be looking for an element k in a sorted array
with n elements. Here, min and max have been defined to be
the array indices that we are searching between, marking
the upper and lower bounds of our search.

1 set min = 0 and max = n - 1
2 find middle of array
3 if k is less than array[middle]
4	 set max to middle - 1
5	 go to line 2
6 else if k is greater than array[middle]
7	 set min to middle + 1
8	 go to line 2
9 else if k is equal to array[middle]
10 	 you found k in the array!
11 else
12	 k is not in the array

Using the algorithm described above, let’s search for the
number 50 in the array on the right. First we set the min =
0 and max = 7. Next, calculate the middle of the array. Well,
how do we decide whether to pick the array index 3 or 4 as
the middle? It actually does not matter, as long as the algo-
rithm is consistent. For our algorithm, let’s choose 3. We’ve
now determined that the middle element is array[3], or 29.
Since 50 is larger than 29 and our array is sorted, we know
that 50 will not be on the left of 29. Therefore, there is no
need to check those elements. To continue the search, min is
set to 4, max remains at 7, and we repeat the process!

This is CS50.© 2018

Binary Search vs. Linear Search

CS50

In computer science, it is a common theme that whenever we make some improvement, it is at the cost of anoth-
er factor. In this case, we trade the speed of a searching algorithm for the time it takes to sort the array. In some
cases, it would be faster to just use linear search rather than to sort the data and then use binary search. Never-
theless, binary search is useful if you plan on searching the array multiple times. In case an element does not exist
in the array, linear search would iterate through the entire array – however long it may be – to know that the given
element does not exist in the array. In binary search, we can be more efficient. Using the algorithm described in
our pseudocode, if the searched element is less than the initial value at min or larger than the initial value at max
(the first and last elements of the array, respectively), the algorithm knows the element is not in the array.

Find the 50!

13 3829 42 501 7

min = 0; max = 7; middle element = 29

min = 4; max = 7; middle element = 42

min = 6; max = 7; middle element = 50

38 42 50

50

63

63

63

50

50 is found!

63

