
This is CS50.© 2018

Computational ComplexityCS50
Key Terms

• computational
complexity

• Big O
• Big Ω

Overview

Computational Complexity Notation
Big O notation, shorthand for "on the order of", is used to denote
the worst case efficiency of algorithms. Big O notation takes the
leading term of an algorithm's expression for a worst case scenar-
io (in terms of n) without the coefficient. For example, for linear
search of an array of size n, the worst case is that the desired ele-
ment is at the end of the list, taking n steps to get there. Using Big
O notation, we'd say linear search runs in O(n) time. We can calcu-
late the computational complexity of bubble sort in the same way,
albeit with a little more math. Remember that bubble sort involved
comparing things by pairs. In a list of length n, n - 1 pairs were
compared. For example, if we have an array of size 6, we would
have to compare array[0] and array[1], then array[1] and ar-
ray[2], and so on until array[4] and array[5]. That's 5 pairs for an
array of size 6. Bubble sort ensures that after k passthroughs of the
array, the last k elements will be in the correct location. So in the
first passthrough there are n-1 pairs to compare, then on the next
passthrough only n-2 comparisons and so forth until there is only
1 pair to be compared. In math (n-1) + (n-2) + ... + 1 can be simplified to n(n-1)/2 which can be simplified even
further to n2/2 - n/2. Looking at the expression n2/2 - n/2, the leading term would be n2/2, which is the same as
(1/2) n2. Getting rid of the coefficient, we are left with n2. Therefore, in the worst case scenario, bubble sort is on
the order of n2, which can be expressed as O(n2). Similar to big O, we have big Ω (omega) notation. Big Ω refers
to the best case scenario. In linear search, the best case would be that the desired element is the first in the
array. Because the time needed to find the element does not depend on the size of the array, we can say the
operation happens in constant time. In other words, linear search is Ω(1). In bubble sort, the best case scenario
is an already sorted array. Since bubble sort only knows that a list is sorted if no swaps are made, this would
still require n-1 comparisons. Again, since we only use the leading term without the coefficients, we would say
bubble sort is Ω(n).

Comparing Algorithms
Big O and big Ω can be thought of as upper and lower bounds,
respectively, on the run time of any given algorithm. It is now
clear to see which algorithms might be better to use given a
certain situation. For instance, if a list is sorted or nearly sort-
ed, it would not make sense to implement a selection sort
algorithm since in the best case, it is still on the order of n2 ,
which is same as it's worst case run time. Binary search may
seem to be the fastest search but it is clear to see that search-
ing a list once with linear search is more efficient for a one
time search, since binary search run requires a sort algorithm
first, so it could take O(log(n)) + O(n2) to search a list using
binary if the list is not already sorted.

The subject of computational complexity (also known as time complexity and/or space
complexity) is one of the most math-heavy topics, but also perhaps one of the most
fundamentally important in the real-world. As we begin to write programs that pro-
cess larger and larger sets of data, analyzing those data sets systematically, it becomes
increasingly important to understand exactly what effect those algorithms have in terms
of taxing our computers. How much time do they take to process? How much RAM do
they consume? One aspect of computational complexity is the amount of time an algorithm takes to run, in
particular considering the theoretical worst case and best case scenarios when running programs.

size of problem

ti
m

e

n2
n

log(n)

Algorithm Big O Big Ω

linear search O(n) Ω(1)

binary search O(log(n)) Ω(1)

bubble sort O(n2) Ω(n)

insertion sort O(n2) Ω(n)

selection sort O(n2) Ω(n2)

