
SQL

Key Terms

• database
• field
• record
• primary key
• persistent
• SQL

Overview
Imagine that you have a sheet of paper with someone’s username on it and a separate 
sheet of paper with the matching password. It wouldn’t be very difficult to keep them 
together. But now imagine that you have thousands of these papers, all with corre-
sponding pieces of information. How would you keep them organized? That’s where 
databases come in. A database is a program that stores data in an easily accessible, 
manageable, and updatable form. By organizing data in a database, programs can ef-
fectively and efficiently keep track of enormous amounts of information.

This is CS50.© 2018

CS50

Databases
Databases look very similar to spreadsheets, like those 
found in Excel or Google Sheets. The data is organized 
in a table in fields (columns) and records (rows). Fields 
describe the data in a column and records link related 
pieces of information. In the example on the right we’ve 
stored the names, ages, and favorite foods of a few 
dogs. The field names of this table are id, name, age, 
and favorite food. Each row ties pieces of information 
together; we know that Elphie is age 2, and loves vanilla 
ice cream. In this table, the id is set to be the primary 
key, or a unique identifier for each record. Each table 
can only have one primary key. Similar to variables, each field has a particular data type. In this table, id and age 
are of the type INTEGER, and name and favorite food are of the type TEXT. There are also other SQL data types, 
such as BLOB (binary data), NULL (no value), REAL (floating-point value), DATETIME (dates and times), and 
NUMERIC (any kind of number).

Say we also wanted to store the number of calories of these favorite foods. Instead of recreating my table to 
have an additional field, we can create a new database that stores a list of foods with their corresponding calorie 
count. Since these tables have the same foods on them, the information from both tables can be linked together.
Databases work with programs, but they are separate files from your code. For this reason, databases are per-
sistent: any changes made to the database remain after the program exits.

id name age favorite food

1 Elphie 2 vanilla ice cream

2 Milo 6 duck dog treat

3 Mochi 3 mochi

SQL
Structured Query Language, or SQL, is the standard language for managing, or “talking” with, a database. Using 
SQL, we can request, search, and filter data from our database. Take a look at these common commands for 
manipulating databases:

CREATE TABLE ‘dogs’ (‘id’ INTEGER PRIMARY KEY AUTOINCRE-
MENT NOT NULL, ‘name’ TEXT, ‘age’ INTEGER, ‘favorite food’ 
TEXT)

This creates a table named dogs with specified fields and data 
types. The id is set to be the primary key and is automatically 
created when a new record is inserted. This way, we will never 
have a record with no id and no ids will ever repeat.

INSERT INTO “dogs” (“name”, “age”, “favorite food”) 
VALUES (“Willow”, 4, “watermelon”)

The INSERT command inputs data for a new record, specify-
ing field names and their corresponding values. Because we 
set id to be autoincremented, we don’t have to worry about 
assigning it ourselves.

SELECT * FROM “dogs”
The asterisk (*) means all in SQL. This al-
lows us to select all records from dogs.

UPDATE “dogs” SET “age” = 2 
WHERE id = 4

This updates the name of the record with 
the id 4. The primary key comes in handy 
whenever we need to retrieve a particular 
record.

DELETE FROM “dogs” WHERE id = 4 
Delete the record at id 4


